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Band-Limited Deconvolution of Locating
Reflectometer Results

PETER I. SOMLO, SENIOR MEMBER, IEEE

Abstract—The locating reftectometer [1] is a frequency-swept nricro-

wave instrument whieQ by analog Fourier trmssformatio~ converts the

reflection eoefficien$ a fmretfon of frequency r(~), intothe spatiaf distrib-

ution of the reflection coefficient r(x). It wiU be shown that by the method

of deeonvolution an increase in axiaf resolution may resnft. By making use

of the fact that the reaf and imaginary parts of the “locating plot” r(x) are

a HWxt transform pair, a signaf-to-noise ratio improvement is achieved

by averaging the results of complex deeonvolution using only the reaf and

then only the imaginary parts of the locating plots. A nnmber of experi-

mental results are give% illoatrating tbe increase in axiaf resolution when

the method of baud-limited deeonvobrtion is applied to some typical

waveguide components and obstacles.

I. FORMULATION OF THE PROBLEM

L ET US assume that we have an instrument, a locat-

ing reflectometerl (LR) [1], that gives a plot of the

distribution of the (complex) reflection coefficient h(x) of
a component having a number of internal reflections as a

function of distance along the waveguide x. This distribu-

tion will be referred to as the “locating vector.” Assume
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‘The locating reflectometer grew out of two reftectometers, the high

resolution reflectometer [7] and the comparison reflectometer [8], result-
ing in an analog instrument with the minimum of electronic circuitry but

yielding the values and the locations of individual reflections.

that, if more than one reflection is present in the wave-

guide tested, the instrument will record the superposition

of these reflections. Because of the bandwidth limitation

of the instrument, the locating plot of a single lumped

reflection will have some axial spread, since zero spread

would require infinite bandwidth. This response to a sin-

gle lumped reflection we shall call the “instrument func-

tion” g(x) which some other workers have referred to as

the “pulse response” or the “aperture function.” Since we

have assumed that the instrument superimposes individual

lumped reflection coefficient plots of axial distributions

h(x)= ~ [a,g(x–x,)l (1)
,=1-

i.e., k individual reflection coefficient axial distributions

with different complex magnitudes and central positions

are added to form the observed locating vector h(x). In

other words, we may regard h(x) as the sum of a number

of scaled and shifted identical functions. It is well known

[2] that the convolution of a function with an impulse

function (Dirac function) will duplicate the given func-

tion, and, similarly, the convolution of a given function

with a number of weighted and shifted impulse functions

will produce the sum of the weighted and shifted original

functions. Designating the set of weighted and shifted

impulse functions as f(x), the observed locating vector is
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thus lH~)l

A(x) =f(x)*g(.x) (2)

where the * denotes convolution. If capitals denote Four-

ier transforms, then

H(s) = F(s). G(s) (3)

indicating that convolving two functions is equivalent to

multiplying their Fourier transforms [2].

In the present representation of individual reflections,

the effects of multiple reflections have been ignored but

will be dealt with in the section on limitations of decon-

volution (Section II-A).

If the axial spacing of the individual reflections making

up A(x) is closer than the “spread” of an individual

reflection’s plot, it will not be possible to break down a

composite record into its constituents by eye, but with the

aid of deconvolution the weighted and shifted impulses

representing the magnitudes and locations of the individ-

ual reflections may be obtained. So it is ~(x) we wish to

obtain.

II. THE TECHNIQUE OF DECONVOLUTION

If (2I represented the convolution off and g, then the

procedure of obtaining f from h and g may be termed

deconvolution. A possible way to obtain f is suggested by

(3):

H(s)
F(s) = —

G(s)
(4)

and via “inverse” Fourier transformation f(x) is obtained.

For the purpose of speeding up the computation of

forward and inverse Fourier transforms, the method of

the fast Fourier transformation (FFT) has been used. This

implies that the functions dealt with are periodic in the

interval of investigation. Although this is an approxima-

tion, it is evident on inspecting the plots (a) and (b) of

Figs. 2--5 that when using a scan of 36 cm, h and g have

died down sufficiently at the edges of the interval so that

the assumption that it is periodic causes negligible error.

A. Baud Limitation

If the LR plots are sampled at regular intervals using n

points, then, in general, n complex frequencies are de-

fined. This may suggest that since resolution is limited by

the number of harmonics used, which in turn is defined

by n, improved resolution should be possible by increas-

ing n.

Dealing with deconvolution in general, we should dis-

tinguish between two cases. Using the analogy of mag-
netic tape recording, in the first case, a video tape record-

ing has been made with information up to 5 MHz. If this

tape is played back with a worn head having a widened

gap, the high frequencies will be severely attenuated and a

“smearing” takes place. In theory, in the absence of noise

and with knowledge of the impulse response of the play-

back head, the full original video content may be restored

Fig. 1. Maguitude of the computed spectrum of a typical locating

reflectometer plot: that of a reflective flange joint. The band-h mited
nature of the spectrum is evident.

via deconvolution. In the second case, let us assume that

before recording the video message has passed through an
ideal low-pass filter cutting everything off above 1 MHz.

In this case, no amount of knowledge of the play-lback

head impulse response will enable us to reconstitute

frequency content above 1 MHz, as the information was

irretrievably Iost before recording.
The LR falls in this second Calte@Ty. It is a swept

instrument operated in the X band from 8.2 to 12.4 GHz.

There is no information available on the behavior of

reflection coefficients outside this band, and thus a physi-

cal, not a mathematical limitation, is set on the resolution.

This is shown in the computed spectra of LR plots. If n is

chosen to be 256 and the spectrum of any locating plot is

computed using FFT, we find that frequencies corre-

sponding to near 50 GHz are computed. Their vallue is

small but nonzero, because of analog and digital noi fse. A

typical spectrum is shown in Fig. 1. In normal Fourier

synthesis, these fictitious frequencies (outside the physi-

cally justifiable band) of small amplitudes would cause no

trouble. However, in deconvolution when two spectra are

divided by each other, the division of one small noisy

quantity into another may result in noise which is nu meri-

cally significant but carries no useful information. Fcm this

reason we limit the frequencies used for computation to

those within the physically justifiable band and discard

the remainder of the spectrum. Ike number of sample

points is still kept large, so that good definition of the

used part of the spectrum is obtained due to redundancy

(noise averaging). Because only a finite section of the

locating plot (extending to infinity) is observed, a slight

spreading of the spectrum results, so additional high-

frequency components are retained. Due to instrument

imperfections (lack of perfect leveling, component
frequency responses, etc.), low-frequency components are

present on the locating plots, and for this reason it was

found beneficial to retain the low-frequency content of

the spectrum. Referring to Fig. 1, harmonics up to the

thirty second are retained, but above that they are dis-

carded. The value of the highest harmonic used is ob-
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tained by calculating the ratio of the distance scanned by

the LR to the half-guide wavelength of the highest

frequency of the sweep. To this number, an arbitrary

constant 8 is added to take in the skirt of the spectrum

caused by the truncation of the locating plot.

B. Making Use of Hilbert Transform Pairs

It can be shown [2] that due to causality the real and

imaginary parts of either the input impedance or the

transfer function of any realizable network are a Hilbert

transform pair and are therefore not independent of each

other. Each may be generated from the other via Hilbert

transformation. One property of Hilbert transformation is

that the amplitudes of the spectral components are left

unchanged, but their phases are altered by 7r/2, positively

or negatively according to the sign of the frequency. In

the LR this is exactly how the imaginary part is generated

from the real part by the use of a 3-dB directional coupler

which in the coupled arm, ideally, shifts the phases of all

frequency components by 90° relative to the main arm [ 1].

However, a practical coupler only approximates this con-

dition; the phase shifts will not always be exactly 90°, and

the power division will not always be equal. Therefore, a

direct complex deconvolution would be hindered by these

imperfections. Moreover, the real and imaginary parts are

obtained by the use of a separate crystal detector pair and

separate amplifiers, and the deconvolution would be

affected by differential gains between the real and im-

aginary outputs. Use will be made of the fact that no extra

information is carried by either part relative to the other,

It is another property of a Hilbert transform pair that the

Fourier spectrum of the pair (one regarded as real, the

other imaginary) has no negative frequency components.

Therefore, when a measurement is carried out with the

LR, both the real and imaginary outputs are data logged,

but initially the imaginary parts of h and g are stored and

not used. However, the spectra of the complex h and g are

calculated by calculating the transforms of Re h and Re g

and discarding the negative frequency components. After

the division of the remaining (band-limited) spectra, the

spectrum of f is available. This result is stored and later

averaged with the result obtained in a similar fashion

from Im h and Im g only. To illustrate the advantage of

the above procedure, suppose that there is a gain dif-

ference between the real and imaginary outputs of the LR.

Let the ratio of the gains be r. Because

F(x) =
Re H(s) +j Im H(s) ~ r Re H(s) +j Im H(S)

Re G(s) +j Im G(s) r Re G(s) +j Im G(s)

(5)

it is indicated that F(s) is obtained only if the gains of the

real and imaginary amplifier are equal, i.e., when r = 1. By

similar means it may be shown that for proper deconvolu-

tion exact phase quadrature between the parts is required.

However, if the quadrature part is obtained by Hilbert

transformation, the relative amplitudes and phases of the

real and imaginary outputs do not matter, and in the

absence of noise the two results of the deconvolutions of

corresponding parts would be identical. Because of the

duplication of information content in the real and im-

aginary parts, by logging both in one observation time the

unknown is measured twice, and, by averaging, an im-

provement in the signal-to-noise ratio results. After the

division of the spectra the spectrum off is also that of a

Hilbert transform pair (no negative frequencies), so the

result of deconvolution is a complex analytic function

with the real and imaginary parts in quadrature.

III. LIMITATIONS OF DECONVOLUTION

There are two main reasons in addition to the inherent

bandwidth limitation which limit the accuracy to which

nearby waveguide obstacles may be separated by decon-

volution. These are 1) lack of superposition of individual

reflections and 2) noise enhancement.

A. Lack of Superposition

It has been assumed above that when more than one

reflection is present in a component tested, the locating

plots will be superpositions of the plots of the individual
reflections. This is only an approximation. Consider two

loss-free reflections in a waveguide given by their S

parameters S’ and S”. The input reflection coefficient is

S;;S:C-2J+

r,n=s[l+
1 – S(ls:lc-%t

(6)

which will approximate

I’,ne S{l+S~lc-2J$ (7)

only if S[l <<1 and S/l<< 1, in which case we have a

superposition of two reflections according to (7). The term

S{: represents the power loss in passing the first reflection,

and the second term of the denominator represents multi-

ple reflections. If the two reflections are small, these

perturbing effects are small and deconvolution may

succeed. The second reason for lack of superposition is

caused by the proximity of reflections. Every reflection

sets up a set of evanescent modes around it, and if the

obstacles are so close that these evanescent fields interact

significantly, the two reflections will not superimpose. The

first higher mode decays at a rate of about 15.5 dB/cm in

X-band waveguide, and at close proximity the higher

order modes also become significant. It has been found by

experiment that obstacles could not be separated from
each other if closer than about 1.5 cm.

B. Noise Enhancement

In the method described here, deconvolution is ob-

tained by the division of two Fourier spectra. If the

spectrum of the instrument function g contains local

“holes,” then dividing by very small numbers can give rise

to a magnification. A threshold has been built into the

program to detect this magnification, and, if it has oc-

curred, the magnified harmonic is attenuated. In some

cases this magnification is justified (i.e., not caused by

noise), and there are methods available to deal with the

retrieval of the so-called “invisible solutions” [3].
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Fig. 2. Deconvolution of a pair of 1.6-mm ( 1/ 16-in) diam ball bearings
3 cm apart in an X-band waveguide (a) versus the locating plot of a
single ball (b). Deconvolution (c) shows the correct spacing between
balls.
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Fig. 3. Deconvolution of thelocating plot ofawaveguide twist (a)with
that of a ball bearing (b), resulting in (c), indicating that the major
reflections are located at the ends of the twisted section.

N. RESULTS

For every attempt at deconvolution an instrument func-

tion g(x) is required which for most cases has to be the

response to a single lumped reflection. It has been found

that a small steel ball (ball bearing) produces a nearly

constant reflection coefficient across the waveguide band

if placed in the center of the broad wall [4], and, therefore,

a small ball shifted and held by an external magnet was

used to obtain g(x). The ball was inserted in a long

terminated waveguide and was positioned to be in the

center of the distance scan examined by the LR. Ball size

found most useful was 1,&mn (l/ 16-in) diam, resulting

in a magnitude of about 0.022 of reflection coefficient. In

all the results given here, only the magnitude of the

resulting complex answer versus distance along the wave-

guide is plotted. The results are normalized to the magni-

tude of the reference reflection used in obtaining the

instrument function. Fig. 2 is a test case having two ball
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Fig. 4. Deconvolution of the locating plot of a 2-cm long waveguide
spacer section (a) with that of a single reflectwe flange joint (b),
resulting in (c), indicating the 2-cm separation of the reflective flange
joints.

bearings placed 3 cm (3/4A~ at midband) from each other.
As Fig. 2 shows, the locating plot indicates two reflec-

tions, but the peaks are 3.8-cm from each other. After

deconvolution, Fig. 2(c) shows the two peaks at normal-

ized values near unity, with a separation very close to 3

cm— the correct physical separation of the balls. Fig. 3(a)

shows the locating plot of a waveguide 900 twist section.

From. the locating plot the nature of the reflections is not

clear; however, after deconvolution Fig. 3(c) shows that

the principal reflections occur at the beginnin~ and at the

end of the twist. The physical contours of the waveguide

components tested are superimposed on the graphs for

comparison. Fig. 4 is the deconvolution of a 2-cIn long

waveguide spacer section against a single reflective flange

joint. The result clearly shows the locations of the flange

reflections at a 2-cm separation (c) which was not recog-
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Fig. 5. Deconvolution of the locating plot of a 20-dB cross-guide
coupler (a) with the locating plot obtained when one of the two
coupling holes was covered up with conductive adhesive tape (b).

Deconvolution reveals that the reflections of (a) were made up of two
reflections of (b) with an indicated separation of 1.7 cm, The axial
separation of the coupling holes is 1.4 cm. In this instance the
“instrument function” was a composite structure, and deconvolution
reveals the presence of more of these structures.

nizable in the original locating plot (a). Fig. 5 is a special

case of deconvolution when the instrument function g was

not the response to a single lumped reflection. This is the

case of a 20-dB cross-guide coupler. An attempt to decon-

volve the locating plot of Fig. 5(a) against a single ball

bearing did not result in anything recognizable. However,

when one of the two cross-shaped coupling apertures was

covered up with adhesive conductive foil, the locating plot

of the “one-hole coupler” was recorded (b). Deconvolu-

tion with this “instrument function” resulted in Fig. 5(c),

clearly showing two reflections 1.7 cm apart. The physical,

axial separation of the two crosses is about 1.4 cm. This

indicates that deconvolution is a method of seeking repli-

cas (shifted and scaled) of the instrument function, which

itself may be a complicated structure.

The locating plots of reflections ((a) and (b) of Figs.

2–5) were obtained by using a type of mechanical scan-

ning of [5] where instead of the circularly shaped slotted
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section of [1, Fig. 2], an XY recorder was used to pull a

sliding, noncontracting short circuit in a uniform section

of waveguide. The recorder was moved in equal incre-

ments in the axial direction by a computer, and at each

position the real and imaginary outputs of the instrument

were s-cad by an A to D converter, and later processed

when the average of a predetermined number of scans was

available, The data logging was performed with a preset,

constant level of confidence [6].

V. SWARY

It has been shown that the method of deconvolution of

the locating reflectometer is basically different from most

applications of deconvolution in that the information

available is strictly band limited, i.e. high (and low)

frequen ties are lost in the “recording” and not in the

“playback.” Although in this case only a modest improve-

ment in resolution may be expected, the resuhs show cases

when the effort was worthwhile. Use was made of the fact

that the real and imaginary parts of the data, i.e., the

locating plots, are a Hilbert transform pair, and thus one

measurement resulted in two independent deconvolutions,

one obtained from the real, the other from the imaginary

parts only. The results are averaged, improving the signal-

to-noise ratio. This method makes the results insensitive to

gain differences and to the lack of exact phase quaclra ture

between the real and imaginary parts.
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Shot-Noise in Resistive-Diode Mixers and the
Attenuator Noise Model

ANTHONY R. KERR, SENIOR MEMBER, IEEE

A bstract—The representationof a pumpedexponential diode, operating

as a mixer, by an eqoivafent Iossy network, is reexamined.It is shown that

the model is correct provided the network Ims ports for aft sideband

frequencies at which (reaf) power flow can occur between the diode and its

embedding. The temperature of the eqnivatent network is q/2 times the

physicaf temperature of the diode. Ihe model is vaMd only if ttre series

resistance and noofiiear capacitance of the diode are nq$gibie. Expres-

sions are derived for the input and output noise temperature and the

noise+emperatnre ratio of ideaf mixers. Sosne eonunon hetiefs eoneerrring

noisr+fi;gnre and noise-temperature ratio are shown to be incorrect.

I. INTRODUCTION

I N RECENT YEARS, the need for low-noise mixers,

esp,:cially in the field of millimeter-wave radio astron-

omy, has stimulated a considerable amount of research

into the theory and design of mixers and mixer diodes.

Manuscript received February 15, 1978; revised May 18, 1978.
The author is with the National Aeronautics and Space Administra-

tion, Goddard Space Flight Center, Institute for Space Studies, New
York, NY 10025.

Improved mixer designs have revealed a substantial dis-

crepancy [1] between measured noise performance and

that predicted by the simple attenuator noise model cf the

mixer.

In the attenuator noise model, the mixer is represented

as a lossy network whose port-to-port power loss is equal

to the mixer conversion loss, and whose physical temperat-

ure TA accounts for the mixer noise. Uncertainty has

existed concerning the value of TA. One wide] y held belief

is that the output noise–temperature ratio’ tM of the [tixer

should be close to unity, from which it follows that TA is

equal to the physical temperature T of the mixer, and that

the noise figure of a room-temperature mixer is equal to

its conversion loss. An alternative view is that tM is equal

‘The noise–temperature ratio f~ of a mixer is defined as ~1] (the
available IF output noise power in bandwidth Aj) + (/cTAJ), when the
mixer and all its input terminations are maintained at ambient tempera-

ture T.
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