128 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 2, FEBRUARY 1979

REFERENCES

[1]1 J. D. Rhodes, “A lowpass prototype network for microwave linear
phase filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-18,
pp. 290-301, June 1970.

[2] ——, “The generalized interdigital linear phase filter,” IEEE
Trans. Microwave Theory Tech., vol. MTT-18, pp. 301-307, June
1970.

3] ——, “The generalized direct-coupled cavity linear-phase filter,”
IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 308-313,
June 1970.

[4] R. Levy, “Filters with single transmission zeros at real or im-
aginary frequencies,” IEEE Trans. Microwave Theory Tech., vol.
MTT-24, pp. 172181, Apr. 1976.

[5S] A. E. Atia and A, E. Williams, “Nonminimum-phase optimum-
amplitude bandpass waveguide filters,” JEEE Trans. Microwave
Theory Tech., vol. MTT-22, pp. 425-431, Apr. 1974,

[6] R. Levy, “Mixed lumped and distributed linear phase filters,” in
1974 European Conf. on Circuit Theory and Design, IEE (London),
Conf. Publ. no. 116, pp. 32-37.

[71 J. D. Rhodes, “Filters with periodic phase delay and insertion-loss
ripple,” in Proc. Inst. Elec. Eng., vol. 119, no. 1, pp. 28-32, Jan.
1972.

[8] ——, “Filters approximating ideal amplitude and arbitrary phase
characteristics,” IEEE Trans. Circuit Theory, vol. CT-20, pp. 120-
124, Mar. 1973,

[S1 R.J. Wenzel, “Solving the approximation problem for narrowband

bandpass filters with equal-ripple passband response and arbitrary

phase response,” in 1975 IEEE MTT-S Int. Microwave Symp.,

IEEE Catalog no. 75CH0955-5, p. 50.

Von K. Wittman, G. Pfitzenmaier, and F. Kunemund, “Di-

mensionierung reflexionsfaktor-und laufzeitgeebneter versteilerter

Filter mit Uberbrickungen,” Frequenz, vol. 24, pp. 307-312, Oct.

1970.

J. H. Cloete, “Microwave linear phase filters,” Progress report no.

2, Dept. Electrical Engineering, Univ. Stellenbosch, South Africa,

Feb. 1978. (Copies may be obtained from the Head of the Depart-

ment.)

C. E. Schmidt, “Delay equalizers,” Wescon Digest, Los Angeles,

CA, Aug. 1970.

(10]

(i

(12]

Band-Limited Deconvolution of Locating
Reflectometer Results

PETER I. SOMLO, SENIOR MEMBER, TEEE

Abstract—The locating reflectometer [1] is a frequency-swept micro-
wave instrument which, by analog Fourier transformation, converts the
reflection coefficient, a function of frequency I'(s), inte the spatial distrib-
ution of the reflection coefficient I'(x). It will be shown that by the method
of deconvolution an increase in axial resolution may result, By making use
of the fact that the real and imaginary parts of the “locating plot” T'(x) are
a Hilbert transform pair, a signal-to-noise ratio improvement is achieved
by averaging the results of complex deconvolution using only the real and
then only the imaginary parts of the locating plots. A number of experi-
mental results are given, illustrating the increase in axial resolution when
the method of band-limited deconvolution is applied to some typical
waveguide components and obstacles.

I. FORMULATION OF THE PROBLEM

ET US assume that we have an instrument, a locat-
ing reflectometer! (LR) [1], that gives a plot of the
distribution of the (complex) reflection coefficient A(x) of
a component having a number of internal reflections as a
function of distance along the waveguide x. This distribu-
tion will be referred to as the “locating vector.” Assume
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!The locating reflectometer grew out of two reflectometers, the high
resolution reflectometer [7] and the comparison reflectometer [8], result-
ing in an analog instrument with the minimum of electronic circuitry but
yielding the values and the locations of individual reflections.

that, if more than one reflection is present in the wave-
guide tested, the instrument will record the superposition
of these reflections. Because of the bandwidth limitation
of the instrument, the locating plot of a single lumped
reflection will have some axial spread, since zero spread
would require infinite bandwidth. This response to a sin-
gle lumped reflection we shall call the “instrument func-
tion” g(x) which some other workers have referred to as
the “pulse response” or the “aperture function.” Since we
have assumed that the instrument superimposes individual
lumped reflection coefficient plots of axial distributions

k
(1)

h(x)= 21 [ag(x—x,)]
=
1.e., k individual reflection coefficient axial distributions
with different complex magnitudes and central positions
are added to form the observed locating vector A(x). In
other words, we may regard A(x) as the sum of a number
of scaled and shifted identical functions. It is well known
{2] that the convolution of a function with an impulse
function (Dirac function) will duplicate the given func-
tion, and, similarly, the convolution of a given function
with a number of weighted and shifted impulse functions
will produce the sum of the weighted and shifted original
functions. Designating the set of weighted and shifted
impulse functions as f(x), the observed locating vector is
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SOMLO: DECONVOLUTION OF LOCATING REFLECTOMETER
thus

h(x)=f(x)=g(x) @)

where the * denotes convolution. If capitals denote Four-
ier transforms, then

H(s)= F(s5)-G(s) €)

indicating that convolving two functions is equivalent to
multiplying their Fourier transforms [2].

In the present representation of individual reflections,
the effects of multiple reflections have been ignored but
will be dealt with in the section on limitations of decon-
volution (Section 11-A).

If the axial spacing of the individual reflections making
up A(x) is closer than the “spread” of an individual
reflection’s plot, it will not be possible to break down a
composite record into its constituents by eye, but with the
aid of deconvolution the weighted and shifted impulses
representing the magnitudes and locations of the individ-
ual reflections may be obtained. So it is f(x) we wish to
obtain.

II. THE TECHNIQUE OF DECONVOLUTION

If (2) represented the convolution of f and g, then the
procedure of obtaining f from s and g may be termed
deconvolution. A possible way to obtain f is suggested by

3):

H(s)

F(s)= G(5)

(4)

and via “inverse” Fourier transformation f(x) is obtained.

For the purpose of speeding up the computation of
forward and inverse Fourier transforms, the method of
the fast Fourier transformation (FFT) has been used. This
implies that the functions dealt with are periodic in the
interval of investigation. Although this is an approxima-
tion, it is evident on inspecting the plots (a) and (b) of
Figs. 2--5 that when using a scan of 36 cm, /& and g have
died down sufficiently at the edges of the interval so that
the assumption that it is periodic causes negligible error.

A. Bard Limitation

If the LR plots are sampled at regular intervals using n
points, then, in general, n complex frequencies are de-
fined. This may suggest that since resolution is limited by
the number of harmonics used, which in turn is defined
by n, improved resolution should be possible by increas-
ing n.

Dealing with deconvolution in general, we should dis-
tinguish between two cases. Using the analogy of mag-
netic tape recording, in the first case, a video tape record-
ing has been made with information up to 5 MHz. If this
tape is played back with a worn head having a widened
gap, the high frequencies will be severely attenuated and a
“smearing” takes place. In theory, in the absence of noise
and with knowledge of the impulse response of the play-
back head, the full original video content may be restored
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Fig. 1. Magnitude of the computed spectrum of a typical locating

reflectometer plot: that of a reflective flange joint. The band-hmited
nature of the spectrum is evident.

via deconvolution. In the second case, let us assume that
before recording the video message has passed through an
ideal low-pass filter cutting everything off above 1 MHz.
In this case, no amount of knowledge of the play-back
head impulse response will enable us to reconstitute
frequency content above 1 MHz, as the information was
irretrievably lost before recording.

The LR falls in this second category. It is a swept
instrument operated in the X band from 8.2 to 12.4 GHz.
There is no information available on the behavior of
reflection coefficients outside this band, and thus a physi-
cal, not a mathematical limitation, is set on the resolution.
This is shown in the computed spectra of LR plots. If n is
chosen to be 256 and the spectrum of any locating plot is
computed using FFT, we find that frequencies corre-
sponding to near 50 GHz are coraputed. Their value is
small but nonzero, because of analog and digital noise. A
typical spectrum is shown in Fig. 1. In normal Fourier
synthesis, these fictitious frequencies (outside the physi-
cally justifiable band) of small amplitudes would cause no
trouble. However, in deconvolution when two spectra are
divided by each other, the division of one small noisy
quantity into another may result in noise which 1s numeri-
cally significant but carries no useful information. For this
reason we limit the frequencies used for computation to
those within the physically justifiable band and discard
the remainder of the spectrum. The number of sample
points is still kept large, so that good definition of the
used part of the spectrum is obtained due to redundancy
(noise averaging). Because only a finite section of the
locating plot (extending to infinity) is observed, a slight
spreading of the spectrum results, so additional high-
frequency components are retained. Due to instrument
imperfections (lack of perfect leveling, component
frequency responses, etc.), low-frequency components are
present on the locating plots, and for this reason it was
found beneficial to retain the low-frequency content of
the spectrum. Referring to Fig. I, harmonics up to the
thirty second are retained, but above that they are dis-
carded. The value of the highest harmonic used is ob-
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tained by calculating the ratio of the distance scanned by
the LR to the half-guide wavelength of the highest
frequency of the sweep. To this number, an arbitrary
constant 8 is added to take in the skirt of the spectrum
caused by the truncation of the locating plot.

B. Making Use of Hilbert Transform Pairs

It can be shown [2] that due to causality the real and
imaginary parts of either the input impedance or the
transfer function of any realizable network are a Hilbert
transform pair and are therefore not independent of each
other. Each may be generated from the other via Hilbert
transformation. One property of Hilbert transformation is
that the amplitudes of the spectral components are left
unchanged, but their phases are altered by 7 /2, positively
or negatively according to the sign of the frequency. In
the LR this is exactly how the imaginary part is generated
from the real part by the use of a 3-dB directional coupler
which in the coupled arm, ideally, shifts the phases of all
frequency components by 90° relative to the main arm [1].
However, a practical coupler only approximates this con-
dition; the phase shifts will not always be exactly 90°, and
the power division will not always be equal. Therefore, a
direct complex deconvolution would be hindered by these
imperfections. Moreover, the real and imaginary parts are
obtained by the use of a separate crystal detector pair and
separate amplifiers, and the deconvolution would be
affected by differential gains between the real and im-
aginary outputs. Use will be made of the fact that no extra
information is carried by either part relative to the other.
It is another property of a Hilbert transform pair that the
Fourier spectrum of the pair (one regarded as real, the
other imaginary) has no negative frequency components.
Therefore, when a measurement is carried out with the
LR, both the real and imaginary outputs are data logged,
but initially the imaginary parts of 4 and g are stored and
not used. However, the spectra of the complex 4 and g are
calculated by calculating the transforms of Re # and Re g
and discarding the negative frequency components. After
the division of the remaining (band-limited) spectra, the
spectrum of f is available. This result is stored and later
averaged with the result obtained in a similar fashion
from Im # and Im g only. To illustrate the advantage of
the above procedure, suppose that there is a gain dif-
ference between the real and imaginary outputs of the LR.
Let the ratio of the gains be r. Because

Re H(s)+j Im H(s) , r Re H(s)+,j Im H(s)
Re G(s)+jIm G(s) = r Re G(s)+, Im G(s)

(5)

it is indicated that F(s) is obtained only if the gains of the
real and imaginary amplifier are equal, i.c., when r=1. By
similar means it may be shown that for proper deconvolu-
tion exact phase quadrature between the parts is required.
However, if the quadrature part is obtained by Hilbert
transformation, the relative amplitudes and phases of the
real and imaginary outputs do not matter, and in the
absence of noise the two results of the deconvolutions of

F(x)=
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corresponding parts would be identical. Because of the
duplication of information content in the real and im-
aginary parts, by logging both in one observation time the
unknown is measured twice, and, by averaging, an im-
provement in the signal-to-noise ratio results. After the
division of the spectra the spectrum of f is also that of a
Hilbert transform pair (no negative frequencies), so the
result of deconvolution is a complex analytic function
with the real and imaginary parts in quadrature.

III.

There are two main reasons in addition to the inherent
bandwidth limitation which limit the accuracy to which
nearby waveguide obstacles may be separated by decon-
volution. These are 1) lack of superposition of individual
reflections and 2) noise enhancement.

LIMITATIONS OF DECONVOLUTION

A. Lack of Superposition

It has been assumed above that when more than one
reflection is present in a component tested, the locating
plots will be superpositions of the plots of the individual
reflections. This is only an approximation. Consider two
loss-free reflections in a waveguide given by their S
parameters S’ and S”. The input reflection coefficient is

22or —2¢
S15811€

I,=8;+—————— 6
Y-S Spe e ©

which will approximate
[a>S{+ Sje ¥ (7

only if 87«1 and S{j<1, in which case we have a
superposition of two reflections according to (7). The term
S5 represents the power loss in passing the first reflection,
and the second term of the denominator represents multi-
ple reflections. If the two reflections are small, these
perturbing effects are small and deconvolution may
succeed. The second reason for lack of superposition is
caused by the proximity of reflections. Every reflection
sets up a set of evanescent modes around it, and if the
obstacles are so close that these evanescent fields interact
significantly, the two reflections will not superimpose. The
first higher mode decays at a rate of about 15.5 dB/cm in
X-band waveguide, and at close proximity the higher
order modes also become significant. It has been found by
experiment that obstacles could not be separated from
each other if closer than about 1.5 cm.

B. Noise Enhancement

In the method described here, deconvolution is ob-
tained by the division of two Fourier spectra. If the
spectrum of the instrument function g contains local
“holes,” then dividing by very small numbers can give rise
to a magnification. A threshold has been built into the
program to detect this magnification, and, if it has oc-
curred, the magnified harmonic is attenuated. In some
cases this magnification is justified (i.e., not caused by
noise), and there are methods available to deal with the
retrieval of the so-called “invisible solutions™ [3].



131

SOMLO: DECONVOLUTION OF LOCATING REFLECTOMETER

3-8cm

Re h(x)

Im h{x)

Il

T{x){=h(x)

0-02[-

001~
001

-0 02—

cm

1#(x)]

36 ecm

—1__
10

©

Fig. 2. Deconvolution of a pair of 1.6-mm (1/16-in) diam ball bearings

3 cm apart in an X-band waveguide (a) versus the locating plot of a
single ball (b). Deconvolution (c) shows the correct spacing between

balls.
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Fig. 3. Deconvolution of the locating plot of a waveguide twist (a) with
that of a ball bearing (b), resulting in (c), indicating that the major
reflections are located at the ends of the twisted section.

V. ResuLts

For every attempt at deconvolution an instrument func-
tion g(x) is required which for most cases has to be the
response to a single lumped reflection. It has been found
that a small steel ball (ball bearing) produces a nearly
constant reflection coefficient across the waveguide band
if placed in the center of the broad wall [4], and, therefore,
a small ball shifted and held by an external magnet was
used to obtain g(x). The ball was inserted in a long

terminated waveguide and was positioned to be in the
center of the distance scan examined by the LR. Ball size
found most useful was 1.6-mm (1/16-in) diam, resulting
in a magnitude of about 0.022 of reflection coefficient. In
all the results given here, only the magnitude of the
resulting complex answer versus distance along the wave-
guide is plotted. The results are normalized to the magni-
tude of the reference reflection used in obtaining the
mstrument function. Fig. 2 is a test case having two ball
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Fig. 4. Deconvolution of the locating plot of a 2-cm long waveguide
spacer section (a) with that of a single reflective flange joint (b),
resulting in (c), indicating the 2-cm separation of the reflective flange

joints.

bearings placed 3 cm (3 /4A, at midband) from each other.
As Fig. 2 shows, the locating plot indicates two reflec-
tions, but the peaks are 3.8-cm from each other. After
deconvolution, Fig. 2(c) shows the two peaks at normal-
ized values near unity, with a separation very close to 3
cm—the correct physical separation of the balls. Fig. 3(a)
shows the locating plot of a waveguide 90° twist section.
From the locating plot the nature of the reflections is not

clear; however, after deconvolution Fig. 3(c) shows that
the principal reflections occur at the beginning and at the
end of the twist. The physical contours of the waveguide
components tested are superimposed on the graphs for
comparison. Fig. 4 1s the deconvolution of a 2-cm long
waveguide spacer section against a single reflective flange
joint. The result clearly shows the locations of the flange
reflections at a 2-cm separation (c¢) which was not recog-
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Fig. 5. Deconvolution of the locating plot of a 20-dB cross-guide
coupler (a) with the locating plot obtained when one of the two
coupling holes was covered up with conductive adhesive tape (b).
Deconvolution reveals that the reflections of (a) were made up of two
reflections of (b) with an indicated separation of 1.7 cm. The axial
separation of the coupling holes is 1.4 c¢m. In this instance the
“instrument function” was a composite structure, and deconvolution
reveals the presence of more of these structures.

nizable in the original locating plot (a). Fig. 5 is a special
case of deconvolution when the instrument function g was
not the response to a single lumped reflection. This is the
case of a 20-dB cross-guide coupler. An attempt to decon-
volve the locating plot of Fig. 5(a) against a single ball
bearing did not result in anything recognizable. However,
when one of the two cross-shaped coupling apertures was
covered up with adhesive conductive foil, the locating plot
of the “one-hole coupler” was recorded (b). Deconvolu-

tion with this “instrument function” resulted in Fig. 5(c),
clearly showing two reflections 1.7 cm apart. The physical,
axial separation of the two crosses is about 1.4 c¢cm. This
indicates that deconvolution is a method of seeking repli-
cas (shifted and scaled) of the instrument function, which
itself may be a complicated structure.

The locating plots of reflections ((a) and (b) of Figs.
2-5) were obtained by using a type of mechanical scan-
ning of [5] where instead of the circularly shaped slotted
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section of [1, Fig. 2], an XY recorder was used to pull a
sliding, noncontracting short circuit in a uniform section
of waveguide. The recorder was moved in equal incre-
ments in the axial direction by a computer, and at each
position the real and imaginary outputs of the instrument
were read by an 4 to D converter, and later processed
when the average of a predetermined number of scans was
available. The data logging was performed with a preset,
constant level of confidence [6].

V. SUMMARY

It has been shown that the method of deconvolution of
the locating reflectometer is basically different from most
applications of deconvolution in that the information
available is strictly band limited, i.e. high (and low)
frequencies are lost in the “recording” and not in the
“playback.” Although in this case only a modest improve-
ment in resolution may be expected, the results show cases
when the effort was worthwhile. Use was made of the fact
that the real and imaginary parts of the data, ie., the
locating plots, are a Hilbert transform pair, and thus one
measurement resulted in two independent deconvolutions,
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one obtained from the real, the other from the imaginary
parts only. The results are averaged, improving the signal-
to-noise ratio. This method makes the results insensitive to
gain differences and to the lack of exact phase quadrature
between the real and imaginary parts.

REFERENCES

[1] P. L Somlo, “The locating reflectometer,” IEEE Trans. Microwave
Theory Tech., vol. MTT-20, pp. 105-112, Feb. 1972.

[2] R. N. Bracewell, The Fourier Transform and Its Applications.
York: McGraw-Hill, 1965.

[3] H. Arsenault and B. Genestar, “Deconvolution of experimental
data,” Can. J. Phys., vol. 49, pp. 1865-1868, 1971.

[4] P. 1 Somlo and D. L. Hollway, “Conductive contacting spheres on
the centre of the broad wall of rectangular waveguides,” Electron.
Lett., vol. 8, p. 507, Oct. 1972.

, “Microwave locating reflectometer,” Electron. Lett., vol. 5,
pp. 468-469, Oct. 1969.

[6] P. I. Somlo, “Automated measurement of noisy voltages with a
preset confidence level,” Electron. Lett., vol. 13, pp. 234-235, Apr.
1977.

[7} D. L. Hollway and P. I. Somlo, “A high-resolution swept-frequency
reflectometer,” JEEE Trans. Microwave Theory Tech., vol. MTT-17,
pp. 185-188, Apr. 1969.

[8] D. L. Hollway, “The comparison reflectometer,” IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-15, pp. 250-259, Apr. 1967.

New

Shot-Noise in Resistive-Diode Mixers and the
Attenuator Noise Model

ANTHONY R. KERR, SENIOR MEMBER, IEEE

Abstract—The representation of a pumped exponential diode, operating
as a mixer, by an equivalent lossy network, is reexamined. It is shown that
the model is correct provided the network has ports for all sideband
frequencies at which (real) power flow can occur between the diode and its
embedding. The temperature of the equivalent network is n/2 times the
physical temperature of the diode. The model is valid only if the series
resistance and nonlinear capacitance of the diode are negligible. Expres-
sions are derived for the input and output noise temperature and the
noise—temperature ratio of ideal mixers. Some common beliefs concerning
noise—figure and noise-temperature ratio are shown to be incorrect.

I. INTRODUCTION

N RECENT YEARS, the need for low-noise mixers,
especially in the field of millimeter-wave radio astron-
omy, has stimulated a considerable amount of research
into the theory and design of mixers and mixer diodes.
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Improved mixer designs have revealed a substantial dis-
crepancy [1] between measured noise performance and
that predicted by the simple attenuator noise model of the
mixer.

In the attenuator noise model, the mixer is represented
as a lossy network whose port-to-port power loss is equal
to the mixer conversion loss, and whose physical tempera-
ture T, accounts for the mixer noise. Uncertainty has
existed concerning the value of 7,. One widely held belief
is that the output noise—temperature ratio' ¢,, of the mixer
should be close to unity, from which it follows that T, is
equal to the physical temperature T of the mixer, and that
the noise figure of a room-temperature mixer is equal to
its conversion loss. An alternative view is that z,, is equal

IThe noise—temperature ratio f,, of a mixer is defined as [2] (the
available IF output noise power in bandwidth Af)~(kTAf), when the
mixer and all its input terminations are maintained at ambient tempera-
ture 7.
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